
BACHELORARBEIT

Sensor Extensions for the Rossum’s
Playhouse Robot Simulator

ausgeführt zum Zwecke der Erlangung des akademischen Grades
eines Bakkalaureus der Technischen Informatik

unter der Leitung von

Univ.Ass. Dipl.-Ing. Dr.techn. Wilfried Elmenreich

Institut für Technische Informatik 182

durchgeführt von

Laszlo Keszthelyi

Matr.-Nr. 0025953

Lessinggasse 18, A-2231 Strasshof

Wien, im September 2007 .

Sensor Extensions for the Rossum’s
Playhouse Robot Simulator

When developing software for mobile-robots it is not always possible to
test them in reality. Therefore simulators of robots and their enviroment
are very useful to test the software and find bugs before running it on
real hardware. Furthermore robot-simulators are practical for scientific re-
search, e. g. developing neural networks.
The main aim of this thesis is to analyze available open-source robot-
simulators for their usability as a testbed for intelligent control strategies.
This thesis concentrated on open-source simulators, because of the cost ad-
vantage, the avoidance of licensing issues and the possibility to extend or
adapt the sources to our requirements.
This report starts with a short introduction to robotics and simulations
in general befor it concentrates on the comparison of the diffent robot
simulators. Finally the solution of three required extensions of Rossum’s
Playhouse, that had to be implemented within the scope of this thesis, will
be presented.

i

Contents

1 Introduction 1
1.1 Structure of the Thesis . 1

2 Fundamentals and Concepts 3
2.1 Robotics . 3

2.1.1 Autonomous Robots . 3
2.1.2 Configuration of a Robot 4

2.2 Simulation . 5
2.2.1 Robots and Simulation 5

3 Overview on Robot Simulation Software 7
3.1 Open-Source Simulators . 7

3.1.1 Rossum’s Playhouse . 7
3.1.2 Player/Stage/Gazebo . 8
3.1.3 Simbad robot simulator 9
3.1.4 c’t-Sim . 10

3.2 Commercial Simulators . 10
3.2.1 Microsoft Robotics Studio 10
3.2.2 Webots . 11

3.3 Comparison . 12
3.4 Summary . 14

4 Problem Statement 15
4.1 Synchronising Client-Server . 15
4.2 Implementing a Pollable Range-Sensor 15
4.3 Implementing a Pivotable Range-Sensor 16

5 Implementation 17
5.1 Synchronising Client-Server . 17
5.2 Implementing a Pollable Range-Sensor 17

5.2.1 Interface RsIPollableSensor 18
5.2.2 RsBodySensor and RsBodyRangeSensor 18
5.2.3 Client-Side Modifications 19
5.2.4 Server-Side Modifications 20

5.3 Implementing a Pivotable Range-Sensor 20
5.3.1 Interface RsIPivotableSensor 21
5.3.2 Class RsBodyPivotedRangeSensor 21

ii

5.3.3 RsProtocol, RsProtocolBodyDecoder, RsProtocol-
BodyEncoder . 21

5.3.4 Client-Side Modifications 21
5.3.5 Server-Side Modifications 22

6 Evaluation 23

7 Conclusion 25

iii

1 Introduction

Writing software for robots is not only challenging but also difficult in testing.
For example when we want to test a large number of variants, we have to pro-
gram and test the robot probably a thousand times. Analysing or identifying
errors directly on the robot can get difficult, because most of them only provide
visual feedback. In some cases we might first want to know if our software runs
without any unexpected sideeffects because the robot hardware is valuable and
we don’t want to damage it. Therefore simulators of robots and their enviro-
ment are good tools to test our software before running it on real hardware.
Simulations allow us to study the behavior of our mobile robot in a simplified
version of the real world. Depending on the requirements the simulation envi-
roment be a simple 2D-map where the robot is able to move around or a wide
more complex including a physics-engine and a 3D world.
There are many robot simulators open-source and commercial but not all of
them are applicable in scientific research because we might have to adapt the
simulator to our needs. For this reason we are analysing robot simulators
for their suitability in scientific research especially as a testbed for intelligent
control strategies (i. e. developing neural networks) in this thesis. However,
primarily we will focus on open-source solutions because they are free, the
sources are available for everyone and hence customisable. Although we will
take a short look on commercial software solutions even if their sources are not
available and adaptation to meet special requirements is not possible.
Sometimes it is required to extend or modify the existing simulation environ-
ment to meet the requirements or gain a better performance. In this thesis
we describe three requirements that had to be met by the Rossum’s Playhouse
robot simulator and how we solved them.

1.1 Structure of the Thesis

Chapter 2 is an overview about robotics and simulation, including a brief his-
tory of robotics. In chapter 3 we present our results of the analysis of different
available robot simulators. Section 3.1 is about open-source robot simulators
and their basic abilities. In Section 3.2 is a an overview about two commercial
robot simulators. Section 3.3 compares the introduced simulators to each other

1

1 Introduction 1.1 Structure of the Thesis

and analysed for their usability as a testbed for intelligent control strategies.
The chapters 4, 5 and 6 are about the three requirements that had to be solved
in the scope of this thesis:

• Synchronising Client-Server

• Implement a Pollable-Sensor

• Implement a Pivotale-Sensor

Chapter 4 is an introduction to the three problems, chapter 5 will describe the
implementation in detail and finally chapter 6 will show how the results have
been affected by our modifications.
At last, chapter 7, which is the end of this thesis, summarises the results of the
presented work.

2

2 Fundamentals and Concepts

As we mentioned before, building a robot is not easy because it involves skills
from many disciplines (hardware design, embedded firmware, sensor selection,
mechanical design,...). Therefore simulation enviroments are very practical be-
cause they can provide a virtual “arena” for testing, measuring and visualizing
robotics algorithms without high cost and time of development and the risk to
damage the robot while testing.
Before we start with our comparison of the different open source robot simu-
lation enviroments we want to give you a short introduction (only the basics
are discussed here because they are needed for the comparison later everything
else would go beyond the scope of this thesis) to robotics in section 2.1 and
simulation in section 2.2.

2.1 Robotics

Robotics is the field of computer science (i. e. artificial ingteligence) and engi-
neering that involves conception, design, manufacture, and operation of robots,
devices that can move and react to sensory input.
Even if many people think of a physical robot when they here the word “robot”
it can refer to both physical robots and virtual software agents (rather known
as “bots”). In this thesis whenever we talk about “robots” we mean physical
robots.
Robots may have different appearance and their capabilities vary vastly but,
all robots share the features of a mechanical, movable structure under some
form of autonomous control.

2.1.1 Autonomous Robots

Autonomous robots are robots which can perform desired tasks without con-
tinuous human guidance or intervention in unstructured enviroments. Robots
differ in the degree of autonomy, for example a high degree autonomy is desired
in fields such as space exploration, where communication delays are unavoid-
able. But there are also mundane uses which benefit from having some level of

3

2 Fundamentals and Concepts 2.1 Robotics

autonomy, like cleaning floors, mowing the lawns, and waste water treatment.
A fully autonomous robot has the ability to

• Gain information about the environment.

• Work for an extended period without human intervention

• Move either all or part of itself throughout its operating enviroment with-
out human assistance.

• Avoid situations that are harmful to people, property, or itself

An autonomous robot may also learn or gain new capabilities like adjusting
strategies for accomplishing its task(s) or adapting to changing surroundings.
Although autonomous robots should be able to do lots of things on their own,
they are just machines and as machines they require regular maintenance.
This is done by humans but in the future robots will repair robots.

2.1.2 Configuration of a Robot

To be able to gain information about the environment, or to interact with it, a
robot needs a set of sensors, a set of effectors and a control system that allows
the robot to act in an intentional and useful way. These are the 3 main elements
of a robot and they act together in a closed loop. Sensors are feeding the control
system with information about the enviroment and the control system specifies
the actions of the effectors to effect changes in the enviroment (or simply just
move itself around). The sensors than can validate this changes and feed back
the new state of the enviroment to the control system.

Sensing the Enviroment

Sensors are transducers which convert one type of energy or a signal of some sort
into data that the robot can understand and act accordingly. Depending on the
application of the robot, different sensors are used for sensing the enviroment.
The most common sensors are:

• mechanicle (e. g. pressure sensor, switch, flow sensor, ...)

• acoustic (e. g. microphones, hydrophones, ...)

• thermal (e. g. thermometers, calorimeter, ...)

• electromagnetic (e. g. multimeter, metal detectors, ...)

• optical radiation (e. g. infra-red, photocells, ...)

• motion (e. g. tachometer, turn coordinator, ...)

• distance (e. g. infra-red, sonar, ...)

4

2 Fundamentals and Concepts 2.2 Simulation

Interacting with the Enviroment

To be able to interact with its enviroment a robot needs some kind of effector
(also called actuator). The type depends on the application of the robot but
almost all are mechanic. The most common effectors are:

• pneumatic actuators

• electric actuators

• motors (most mobile robots are using electromotors and some a combus-
tion engine)

• hydraulic cylinders

2.2 Simulation

A simulation is a method which models key-characteristics of real-life or a hy-
pothetical situation so that it can be studied in a safe enviroment. By the
use of simulations it is possible to make predictions about the modeled system
in different situations. Simulations are not limited to simplify or allow studies
and predictions, they can also be used for education and training. This usuallly
occures when it is prohibively expensive or too dangerous to allow trainees to
use the real equipment in the real world.
Another type of simulators are the emulators, that are used to execute pro-
gramms in a controlled testing enviroment. The programmer is able to control
the speed and execution of the simulation and has access to all informations of
the simulated operations.

2.2.1 Robots and Simulation

In the field of robotics, simulation plays a key role because it permits ex-
perimentation that would otherwise be expensive and/or time-consuming. It
also allows the evolution of robotics control systems, which depend on random
permutations of the control system over many generations (e. g. genetic algo-
rithms).
Another great advantage is the simulation of mulitiple robots at the same time.
A popular venue for these simulations is in Robot Soccer, where either through
simulation or with physical robots, one team of robots competes against an-
other, making it a challenging test of cooperative robot behavior.
The downside of simulations is that a simulation is always an abstract model
of the real environment that disregards particular aspects (for example, many
models do not take failing or noisy sensor into account). Often, also several

5

2 Fundamentals and Concepts 2.2 Simulation

parameters from the real-world scenario are unknown, so that it is difficult to
define a valid simulation. The simulation model must be carefully chosen (de-
pending on the purpose and real-world situations), otherwise the results from
simulation do not hold for the intended purpose. Despite the disadvantages,
simulations are very helpful for research and development.

6

3 Overview on Robot Simulation
Software

In this chapter we will introduce and compare different robot simulators. First
we will have a look at some open-source simulators not only because they are
free to everyone but rather because their sources are public and therefore these
simulators are better customisable to specific needs of a particular purpose.
After that we will have a look at commercial simulators. Finally we will present
a comparison between the robot simulators.

3.1 Open-Source Simulators

As we mentioned in this chapter’s introduction, open-source simulators are very
attractive free to everyone and their sources are public, allowing the extension,
modification and adaption of the programme by everyone. It also allows a
better insight into how the simulator works and therefor making it possible
to write better simulations of a particular situation. The following four robot
simulators are some of the most popular open-source simulators.

3.1.1 Rossum’s Playhouse

The Rossum’s Playhouse1 is a client/server-based robot simulator written in
Java. It is an 2D robot simulator intended to aid developers implementing
control and navigation logic. The Rossum’s Playhouse allows to build a data-
configurable robot which can interact with a simulated landscape or solve a
virtual maze. For a better understanding how to create simulations for the
Rossum’s Playhouse a user-guide is also available. It not only contains a de-
scription of the simulator and examples it also contains a short introduction to
Java, which is helpful to those that are not familiar with the language.
The communication between client and server is based on TCP/IP-sockets,
which allows to write clients in a different language than Java. The server
represents the simulation engine and the simulation environment (floor plan).

1rossum.sourceforge.net

7

3 Overview on Robot Simulation Software 3.1 Open-Source Simulators

The client connects to the server uploads the details of robot and starts the
simulation. The simulated robot is controlled by the client, this is achieved
by sending sensor and positioning informations continuously from the server to
the client. The server is designed to accept connections from multiple clients
simultaneously but it does not support interactions between robots yet.
Although the Rossum’s Playhouse is lacking a physics engine it could be pos-
sible to write an extension for it, allowing to move objects around or simulate
the behaviour of the robot actuators in a more realistic way.

3.1.2 Player/Stage/Gazebo

As the Rossum’s Playhouse robot simulator the Player/Stage/Gazebo2 is a
client/server-based simulator but it is written in C/C++. It also differs in
its architecture because it consists of a main programme, “Player”, and two
plugins, “Stage” and “Gazebo”.

Player

Player is a network server for robot control. Running on a robot, Player pro-
vides a simple interface to the robot’s sensors and actuators over the IP network.
A client program connected to Player can read data from sensors, writing com-
mands to actuators, and configure devices on the fly. Player supports a variety
of robot hardware and it is possible to add support for new hardware.

Stage & Gazebo

The Player/Stage project provides two multi-robot simulators: Stage and
Gazebo. Since Stage and Gazebo are both Player-compatible, client programs
written using one simulator can usually be run on the other with little or no
modification. The key difference between these two simulators is that whereas
Stage is designed to simulate a very large robot population with low fidelity
(fairly simple, computationally cheap models of lots of devices), Gazebo is
designed to simulated a small population with high fidelity (realistic sensor
feedback and physically plausible interactions between objects including an
accurate simulation of rigid-body physics). Another difference between them
is that Stage uses a 2D environment and Gazebo a 3D Environment for the
simulations.

2playerstage.sourceforge.net

8

3 Overview on Robot Simulation Software 3.1 Open-Source Simulators

3.1.3 Simbad robot simulator

Simbad 3 is a Java-based 3D multi-robot simulator developed for scientific and
educational purposes. The main motivation is to provide an easy-to-use all-
in-one package for Evolutionary Robotics. The Simbad package includes a
complex 3D simulation engine (Simbad), a Neural Network library as well as
a complete Evolutionary Algorithm library (Genetic Algorithm, Evolutionary
Strategy, Genetic Programming with trees or graphs).

The Simbad Simulator

Simbad is a Java-based 3D multi-robot simulator developed for scientific and
educational purposes. According to Simbad’s description it allows the appli-
cation of batch simulation in the context of heavy computation for learning
(e. g. evolutionary algorithms). The robot simulator comes with an integrated
simple physical engine and allows Python scripting with jython4.

Neural Network Library

The PicoNode library provides a general graph-based representation framework
along with two implementations: feed-forward and recurrent neural networks.
The use of PicoNode is not limited to robot control; it has been designed so
as to ease building of simple (e. g. multi-layered perceptrons) as well as less
simple (e. g. N-layers recurrent nets) neural networks.5

Evolutionary Algorithm Library

PicoNode provides standard supervised learning algorithm (e. g. Back-
Propagation), however such learning algorithms are usually of little use in the
context of sparse, noisy, delayed and asynchronous reinforcement signals that
are usually part of the task of control learning in mobile robotics (e. g. a binary
reward (success/failure) is provided only when the robot may reach the exit of
a maze).4

3simbad.sourceforge.net
4www.jython.org
5taken from “Simbad : an Autonomous Robot Simulation Package for Education and Re-

search” (www.lri.fr/ bredeche/MyBiblio/SAB2006simbad.pdf)

9

3 Overview on Robot Simulation Software 3.2 Commercial Simulators

3.1.4 c’t-Sim

The c’t-Sim is a client/server-based multi-robot simulator written in Java for
the c’t-Bot (a small robot programmed in C), both developed by German com-
puter magazine c’t6. The simulator includes a maze-generator allowing the
generation of random floor-plans without great effort. It is possible to run c’t-
Bot control programs on the simulator by first compiling and than running the
programm as a tcp-client that connects to a running ct-Sim7. The sources are
well documented and a FAQ helps to find the most common problems when
trying to run the simulator. All in all the c’t-Sim is a simple simulator but it
can be extended to a more complex one that could support various robot types.
It does not support a physics engine.

3.2 Commercial Simulators

On the one hand commercial simulators are in the majority of cases continu-
ously improved but on the other hand it is often not possible or not permitted
to write own extensions or to modify the simulator. For that reason the sim-
ulator’s sources are very rarely public. We will now examine two well-known
commercial simulators.

3.2.1 Microsoft Robotics Studio

The Microsoft Robotics Studio8 is a Windows-based environment for robot
control and simulation for hobbyist, academic and commercial developers to
create robotics applications for a variety of hardware platforms.9

It comes with a 3D simulation environment and includes PhysX10 as its physics-
engine. It can be also used for other 3D physical simulations than just for sim-
ulating robot behaviour. The robots are mainly programmed via the Microsoft
Visual Programming Language11 that takes getting used to, but it is possible to
write programs in other languages such as C# and Visual Basic .NET, JScript,
and IronPython.

6www.heise.de/ct/projekte/machmit/ctbot/wiki
7wiki.ctbot.de/index.php/C%27t-Bot Simulation
8msdn.microsoft.com/robotics
9taken from msdn2.microsoft.com/en-us/library/bb483024.aspx

10www.ageia.com
11msdn2.microsoft.com/en-us/library/bb483088.aspx

10

3 Overview on Robot Simulation Software 3.2 Commercial Simulators

As previously mentioned the Microsoft Robotic Studio supports a wide variety
of robots:

• CoroWare’s CoroBot12

• Lego Mindstorms NXT13

• Robosoft’s robots14

• Boe-Bot15

• iRobot Create16

Although the sources are not public the Microsoft Robotic Studio includes
support for packages to add other services to the suite. One currently available
is a community-developed Maze Simulator. Like the maze-generator for the
c’t-Sim it creates worlds with walls that can be explored by a virtual robot.

3.2.2 Webots

Webots17 is a 3D multi-robot simulator similar to Simbad and Gazebo. It has an
integrated physics engine and allows the modelling of various robots because
it includes a wide range of different loco-motions, actuators and sensors. A
built-in IDE helps you programming the robot, but you can also use your
favorite development environment. The programme can than be simulated or
transfered directly to a real robot. Webots supports roughly the same real-
robots as Microsoft Robotics Studio does. It’s main disadvantage is its high
cost, because there are open-source simulators which also provide among other
things a 3D enviroment, a physics-engine and a library of different robots and
their components.

12www.corobot.net
13mindstorms.lego.com
14www.robosoft.fr/eng/
15en.wikipedia.org/wiki/Boe-Bot
16www.irobot.com
17www.cyberbotics.com/products/webots

11

3 Overview on Robot Simulation Software 3.3 Comparison

3.3 Comparison

Simulator
Rossum’s
Playhouse

Player
Stage/Gazebo

Simbad
robot simulator

Language Java C/C++ Java

Platforms
Windows,
Linux, Mac OS X,
Solaris

Windows,
Linux, Mac OS X,
Solaris

Windows,
Linux, Solaris

Price free1 free1 free1

Field of
Application

Research,
Development,
Education,
Hobbyist

Research,
Development,
Education,
Prototyping,
Hobbyist

Research,
Education,
Hobbyist

Release 0.61 1.4 2.1.0rc1

Sources
available

yes yes yes

Architecture Client/Server Client/Server Standalone

Multi-
Robots

planned supported supported

Extendable yes yes yes

Physics-
Engine

none built-in ODE2

1Open-Source
2Open Dynamics Engine (www.ode.org)

12

3 Overview on Robot Simulation Software 3.3 Comparison

Simulator c’t-Sim
Microsoft
Robotics Studio

Webots

Language Java
Microsoft Visual
Programming
Language

C/C++, Java

Platforms Windows, Linux Windows Windows

Price free1 free2

Pro: SFR 3450,-
Pro (academic):
SFR 2300,-
Edu: SFR 320,-

Field of
Application

Development,
Hobbyist

Research,
Development,
Education,
Prototyping,
Hobbyist

Research,
Development,
Education,
Prototyping

Release 13 1.5 5

Sources
available

yes no no

Architecture Client/Server Client/Server Standalone

Multi-
Robots

supported supported supported

Extendable yes yes no

Physics none Ageia PhysX ODE3

1Open-Source
2free for non commercial use, otherwise EUR 428,- for commercial license
3Open Dynamics Engine (www.ode.org)

13

3 Overview on Robot Simulation Software 3.4 Summary

3.4 Summary

Many robot simulators exists, each developed for another purpose but mostly
all of them have the same abilities. They consist of a simulation-engine, some
with integrated physics, and allow one or multiple clients to control and mon-
itor one or multi robots in the virtual world.
The open-source simulators we introduced are all extendable, modifyable and
they allow a better insight of the simulators behaviour. Furthermore the Sim-
bad robot simulator includes two addtional standalone libraries that can be
really helpful in developing evolutionary robotics.
Most commercial robot simulators provide enough flexibility to simulate com-
plex robot control systems too, but due to their non-public sources it is difficult
for the experimenters to adapt their programs for maximum efficiency.
To sum up, we can say that open-source robot simulators are more flexible
than commercial robots simulators are. This is the main reason why they are
preferred by hobbyists and academic researchers.

14

4 Problem Statement

The main aim of this thesis was to solve three problems regarding “Rossum’s
Playhouse” robot simulator. In this chapter we want to give you a short intro-
duction what these problems were and why they were necessary to be solved.
In detail these problems were:

• Synchronising Client-Server

• Implementing a Pollable Range-Sensor

• Implementing a Pivotable Range-Sensor

These modifications were needed to gain a higher simulation speed in our
simulations, because we wanted to simulate a simple robot, equiped with a
neural network, that should learn his way through a maze.

4.1 Synchronising Client-Server

Synchronisation between the client and server is necessary, when we have appli-
cations that are sensitive to timing issues or we want to run the simulation at
an accelerated clock rate (in which the simulator time moves more quickly than
the real-time). Another problem could be that our client’s operations require a
very large, time-consuming amount of processing so that the client can’t keep
up with the server. This was the problem we were facing with, because we
wanted to simulate a neural network on our client. In our case it just happend
that the client was still calculating when the server already sent the next sensor
values. Therefore we needed a better synchronisation between our client and
the server.

4.2 Implementing a Pollable Range-Sensor

A pollable range-sensor is useful when we want to know the current sensor-
values at a particular time or don’t want to receive permanently sensor-events.
Moreover we wanted to have a range-sensor which only computes it’s new sensor
values on status-requests and not every time the robot moves. The idea was

15

4 Problem Statement 4.3 Implementing a Pivotable Range-Sensor

to minimize the number of unnecessary computations on the client- and the
server-side and with it to enable a faster simulation speed.

4.3 Implementing a Pivotable Range-Sensor

The idea of implementing a pivotable range-sensor was, that if we have a sensor
we can rotate when we want and in any directions you want, it is not essential
to place lots of sensors, each facing another direction, only to observe a larger
area. With a simple rotation-request it is possible to turn the sensor towards
the desired direction. As with the pollable range-sensor the main reason was
the gain of simulation speed and the reduction of unnecessary computations on
the client- and the server-side.

16

5 Implementation

In this chapter we present the solution to three problems that had been intro-
duced in the last chapter. To recapitulate these problems were:

• Synchronising Client-Server

• Implementing a Pollable Range-Sensor

• Implementing a Pivotable Range-Sensor

5.1 Synchronising Client-Server

As we analysed the Rossum’s Playhouse documentation and the sources we fig-
ured out that it already provides the possibility to synchronise the client with
the server. The synchronisation is enabled/disabled by the option “Interlock”
in the server configuration file. When enabled, it ensures a rigid synchronisa-
tion between the simulator clock and its client applications. This is achieved
by suspending the simulation clock every time the server sends an event to the
client. The clock is not re-started until the client process replies with an “in-
terlock acknowledgement”. This reply is not sent by the client until all event
handlers related to the simulator-issued event have been invoked and have com-
pleted their operations. This ensures that all processing related to an event
will be completed before the simulator is enabled to continue.
To enable the synchronisation we only have to add the following line to the
server’s property file:

interlockEnabled = true

5.2 Implementing a Pollable Range-Sensor

During our analysis we also come to know that pollable sensors are supported
by the Rossum’s Playhouse. On the client side polling is done by a sensor
request to the server, which can be placed by calling the following method:

void sendSensorStatusRequest(RsBodySensor sensor)

17

5 Implementation 5.2 Implementing a Pollable Range-Sensor

This will trigger the server to send the current status for the queried sensor.
The client will than receive an event but here comes the tricky part. How can
we distinguish between events automatically generated by the server and our
polled events? Because we are only interested in the polled events we don’t
have to take care how to distinguish between the two event types, we only
have to find a way to disable the automatically generated events. The first and
easiest part is to set the sensor resolution to 0. This will reduce the generated
events to those generated by the robots motion. To eliminate these events
completely we needed to modify the sources. Our aim was not to alter the
existing functionalities but to extend them to meet our requirements. Because
a pollable sensor event is triggered by the client’s sensor request, we also came
up with the idea to limit sensor value computations to those when the server
has been requested to send the client the actual sensor status.
Now before we go into the details, here is a short overview about all required
modifications in the Rossum’s Playhouse:

• An interface for only pollable sensors

• Extend RsBodySensor and modify RsBodyRangeSensor

• Modify SimSensorRequestHandler

• Provide the client the ability to send a request to enable the sensor’s
“polling only”-mode

• Provide the server the ability to handle the client’s request to enable the
“polling only”-mode sensors

5.2.1 Interface RsIPollableSensor

The RsIPollableSensor-interface is intended to be implemented by sensors that
can be switched into “polling-only”-mode. It defines the following three meth-
ods:

• public boolean isPollable(); Returns the current value of pollSensor.

• public void enable SensorPolling(boolean enable); Sets the new
pollSensor-value.

• public void compute Sensor(); Calling this method sets the compute-
Sensor-value true.

5.2.2 RsBodySensor and RsBodyRangeSensor

The class RsBodySensor has been extended by the following variables and
methods:

18

5 Implementation 5.2 Implementing a Pollable Range-Sensor

• boolean pollSensor = false;

Identifies if the sensor is in “normal” or “polling only”-mode.

• boolean computeSensor = false;

When the sensor is in “polling only”-mode, no sensor values are computed
until computeSensor is set true.

• public boolean isPollable()

• public void enable SensorPolling(boolean enable)

• public void compute Sensor()

Altough these variables and methods are visible to every sensor class, they
are not used until they implement the RsIPollableSensor-interface. We imple-
mented the interface only in the RsBodyRangeSensor class becausethis was
the only sensor that was required to be pollable. The implementation is not
complicated and involves the modification of one method only:

public boolean computeAndSetState(...)

As we mentioned before, the basic idea is that the sensor-values are not
computed until a sensor request was placed. Therefore we added the following
condition to the beginning of the method:

if (pollSensor && !computeSensor)

{
return false;

}
computeSensor = false;

The condition is only fulfilled when polling is enabled and the computeSensor
has been set true by an incoming sensor-status-request (see the Server-Side
Modifications).

5.2.3 Client-Side Modifications

In order to be able to enable the polling mode of a sensor, it was necessary to
extend the RsClient- and the RsRequest-class.

• RsClient
We added a new method to the class, which allows the enabling/disabling
of the sensor’s polling-mode.
void sendEnablePollSensorRequest(RsBodySensor sensor, boolean

pollSensor)

• RsRequest
We added a new request-identification code to be able to identify the
polling-enabling-request.
int REQ ENABLE POLL SENSOR = 14;

19

5 Implementation 5.3 Implementing a Pivotable Range-Sensor

5.2.4 Server-Side Modifications

On the server-side request are first stored in a class, which is than
processed by the request handler. Therefor a new class for stor-
ing the request RsEnablePollSensorRequest and a new request-handler
SimEnablePollingSensorRequestHandler have been added to handle the
REQ ENABLE POLL SENSOR-request. When we take a closer look at both classes we
can see that RsEnablePollSensorRequest is derived from RsRequest and that
SimEnablePollingSensorRequestHandler is derived from another newly created
interface RsEnablePollSensorRequestHandler. As we mentioned before a re-
quest for enabling/disabling the polling-mode will be only further processed if
the corresponding sensor-class implements the RsIPollableSensor, this condi-
tion is checked by the request-handler class in the first place.
Also additional modifications where necessary in RsConnection:

• A new variable for the request-handler:
RsEnablePollSensorRequestHandler enablePollingSensorRequestHandler;

• A new method to set the request-handler:
void setEnablePollingSensorRequestHandler(RsEnablePollSensorRequestHandler

handler)

5.3 Implementing a Pivotable Range-Sensor

In the case of the pivotable range-sensors no clue was found that it is already
included in the Rossum’s Playhouse. Hence we had to implement it completely
by ourselves. Again modifications on the server- and client-side were unavoid-
able, but the solution is simple.
Now before we go into the details, here is a short overview about what these
modifications are:

• An interface for pivotable sensors.

• Extend the existing “RsBodyRangeSensor”, to be able to set the sight-
angle every time we want.

• Extension of the RsProtocol, RsProtocolBodyDecoder and RsProtocol-
BodyEncoder.

• Provide the client the ability to send a “Rotation”-request to the server.

• Provide the Server the ability to handle the client’s “Rotation”-request.

20

5 Implementation 5.3 Implementing a Pivotable Range-Sensor

5.3.1 Interface RsIPivotableSensor

The RsIPivotableSensor interface defines the method public abstract void

set Angle(double sightAngle) for all pivotable sensor. The method allows to
set the angle of the sensor at any time. Hence it is required that pivotable
sensors implement this interface.

5.3.2 Class RsBodyPivotedRangeSensor

Because a pivotable range sensor is a sub-type of the normal range-sensor, we
derived a new class RsBodyPivotedRangeSensor from RsBodyRangeSensor, that
also implements the newly created RsIPivotableSensor-interface.

5.3.3 RsProtocol, RsProtocolBodyDecoder,
RsProtocolBodyEncoder

Because we added a new type of sensor, we have to adapt the RsProtocol-,
the RsProtocolBodyDecoder- and the RsProtocolBodyEncoder-class. Without
these modifications the client won’t be able to add a pivotable-range-sensor to
the robot’s body.

• RsProtocol
A new body-part identification code was added to identify the sensor
while encoding/decoding the body-part specification:
static final int BODY PIVOTED RANGE SENSOR = 10;

• RsProtocolBodyDecoder, RsProtocolBodyEncoder
In both classes a new section has been added to the send/receive method.
It is nearly identical to the BODY RANGE SENSOR section except that it the
body-part identification code for the new RsBodyPivotedRangeSensor is
used.

5.3.4 Client-Side Modifications

In order to be able to send rotation-requests of a sensor to the server, it was
necessary to extend the RsClient- and the RsRequest-class.

• RsClient
We added a new method to the class, which allows the enabling/disabling
of the sensor’s polling-mode.
sendRotateSensorRequest(RsBodySensor sensor, double angle)

21

5 Implementation 5.3 Implementing a Pivotable Range-Sensor

• RsRequest
We added a new request-identification code to be able to identify the
rotation-request.
int REQ ROTATE SENSOR = 15;

5.3.5 Server-Side Modifications

As described in pollable-sensor’s server-side modification, we needed to add
a new class RsRotateSensorRequest to store the rotation-request and a
new request-handler SimRotateSensorRequestHandler. As before the request-
handler SimRotateSensorRequestHandler is implementing the newly created in-
terface RsRotateSensorRequestHandler. To be sure to rotate only pivotable-
sensors the handler first checks if the sensor is a pivotable-sensor anyway.
Again additional modifications where necessary in RsConnection:

• A new variable for the request-handler:
RsRotateSensorRequestHandler rotateSensorRequestHandler;

• A new method to set the request-handler:
void setRotateSensorRequestHandler(RsRotateSensorRequestHandler

handler)

22

6 Evaluation

In this chapter we want to show you a performance comparison between the
original Rossum’s Playhouse sources and our modified version. For the com-
parison we used a simple robot equiped with a neural network that should find
his way through a maze. The settings for the neural network are:

Population Size 20
Generations 200
Input Nodes 3
Output Nodes 2

The simulations were all running on the following machine:

CPU AMD64 X2 6400+
Main Memory 2GB
OS Ubuntu 7.10
Java 1.6

The original and the modified Rossum’s Playhouse were tested at a simula-
tion speed of 50 and 500 with 3 passes each to get an avarage result. In the
next table we present you our results:

Sources
Execution Time
at 50x Sim.-Speed

Execution Time
at 500x Sim.-Speed

Original
Rossum’s Playhouse

failed1 12 minutes

Modified
Rossum’s Playhouse

27 minutes 9 minutes

1the simulation has failed all passes

23

6 Evaluation

Our modified version was 3 minutes faster than the original one at 500x sim-
ulation speed. In contrast to the original version the modified simulator was
able to finish the simulation at 50x simulation speed. The original version al-
ways crashed after the 90th generation. This shows that our modified Rossum’s
Playhouse performs better than the original when running our neural network
simulation on it.

24

7 Conclusion

Before we came to the analysis of some of the available robot simulation pro-
grams, we first gave you a short overview about robotics and simulation. The
field of robotics involves a wide range of disciplines and going into to much
details would have gone beyond the scope of this thesis.
Robot simulators are not only indented to simulate the robot’s behaviour but
also to monitor internal values and protect expensive hardware from being
damaged or even being destroyed.
We introduced some of the most used robot simulators and came to the conclu-
sion that it is better to use an open-source simulator like Rossum’s Playhouse
or Simbad robot simulator, because they are in no way inferior to commercial
robot simulators in their functionalities and furthermore provide flexibility, ex-
tendability and the possibility to understand the simulator’s functionality.
We also described in detail how we extended the Rossum’s Playhouse by a pol-
lable range-sensor and a pivotable range-sensor. The same way it is possible
to add additional (yet unsupported) sensors or modify existing ones to satisfy
requirements. Finally we compared our modified Rossum’s Playhouse robot
simulator to the original one and saw that it performs better than the orignal
one.

25

